1,什么是基坑开挖

设置管井井点降水,以利开挖人员和机械作业及土体装卸运输。顶层6.0m以内用长臂挖掘机开挖,开挖过程中坑内用小型装载机配合,将远离挖机的土方推至挖机的工作范围内。5.4基坑开挖方法5.4.1车站基坑开挖步骤车站基坑由西向东纵向分段竖向分层开挖,每段基坑的开挖长度与主体分节相对应,为了有利于基底排水,开挖面比主体施工段超前6.0m,开挖面坡度定为1:1,并设置1个长为6.0m的平台,以保证开挖面的稳定。基坑从上至下分两层开挖,挖一层吊装一排钢支撑。连续墙底标高 约14m 6m 6m 原地面 结构底板 开挖步骤示意图 步骤一、坑内降水,开挖基坑至第一道支撑底1m。步骤二、架设第一道钢支撑,第二次开挖基坑至第二道钢支撑底1m。 步骤三、架设第二道钢支撑。 步骤四、开挖基坑至设计基底标高。基坑开挖前,设置管井井点降水,以利开挖人员和机械作业及土体装卸运输。顶层6.0m以内用长臂挖掘机开挖,开挖过程中坑内用小型装载机配合,将远离挖机的土方推至挖机的工作范围内。6.0m以下的土方用人力配合挖掘机挖装,吊机提装自卸车。白天开挖土方存于临时堆土场,夜间开挖土方直接运至弃土场。小挖掘机的就位(进出工作面、调头等)用吊车吊运。因坑内的钢管支撑间的水平净距只有2.4m,上下净距约3.8~5.4m,为确保挖掘机作业时不挤压、不碰撞钢支撑,作业时注意以下几点:第一:钢支撑顶面以下1.0m范围内挖掘机直接挖装。机械作业时派人前后左右引导司机作业。这一高度挖掘机的左右履带不平引起的左右摆动较小,不致于碰撞钢支撑。第二:以下部分先用人力在基坑一侧挖一个底部长宽尺寸为4.5m×3.0m的工作坑,坑底离钢支撑底面3.0m~3.5m,将挖掘机吊运至工作坑内往另一头开挖,此时机器在钢支撑之下,不致引起碰撞。
就是地下室部分或基础部分的挖土。
先跟你说说这四个词的定义吧。 基坑,建筑基础开挖的临时性坑井称为基坑。 所谓深基坑,就是开挖深度超过5米的基坑是为深基坑。 所谓扩大基础,举个例子,就像砌围墙那样,围墙的基础必须比围墙本身还要宽大,而且基础每砌一层砖,就要放大一下基础面积。这个就是扩大基础。 沟槽,底宽3m以内且底长大于宽3倍以上。 你是做预算套定额还是。。?
为满足承载力的要求,一般建筑物的基础,都需要埋入到地面线以下,而从地面到基础底面的这部分的土石方必须先行挖除。挖除这部分土石方以便于基础施工的工程,就是基坑开挖工程。

什么是基坑开挖

2,求装载机减压阀工作原理图和说明谢谢各位大虾

一、减压阀的工作原理减压阀是安装在液化气钢瓶角阀上连接角阀与胶管,起到降低输出压力和稳定输出压力的家用燃气具配套中的重要燃气设备,具有结构简单、压力稳定、重量轻、调节安装方便等优点。主要由进气口、出气口、手轮、上阀盖、下阀盖、进气嘴、呼吸孔、上气室、减压室、阀垫、杠杆、橡胶薄膜、弹簧、调节螺塞等部件组成。其结构组成如示意图。深圳市贝斯特燃气设备有限公司,电话:0755-33239851,http://www.ccbestgas.com专业卖燃气减压阀,欢迎选购!我们知道,液化石油气从钢瓶出来时为高压气体先通过进气管到达减压室,当用户关闭燃气具的开关时,随着进入减压室的液化石油气增多,其压力升高,把由弹簧压着的橡胶薄膜顶上去,存在于上气室的部分空气由呼吸孔排出阀体。这样,迫使杠杆向上移动,利用杠杆作用使阀口关闭,切断了液化石油气进口的通路,减压阀出口的压力就不再上升。当打开燃气具的开关后,液化石油气从减压阀内流出,使减压室内的压力下降,橡胶薄膜下凹,带动杠杆下移,外部空气从呼吸孔进入上气室,使阀垫向中移动,进气喷嘴变大,进气量增加,压力升高。这样反复不断的调节过程使减压室的压力总是恒定的,即不管进气压力偏高还是偏低,出口压力总是稳定的,从而直到降压和稳压的作用。
减压阀工作原理: 减压阀是采用控制阀体内的启闭件的开度来调节介质的流量,将介质的压力降低,同时借助阀后压力的作用调节启闭件的开度,使阀后压力保持在一定范围内,并在阀体内或阀后喷入冷却水,将介质的温度降低,这种阀门称为减压减温阀。减压阀快易优自动化选型有收录。该阀的特点,是在进口压力不断变化的情况下,保持出口压力和温度值在一定的范围内。 减压阀按结构形式可分为薄膜式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可人为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式。先导式减压阀当减压阀的输出压力较高或通径较大时,用调压弹簧直接调压,则弹簧刚度必然过大,流量变化时,输出压力波动较大,阀的结构尺寸也将增大。为了克服这些缺点,可采用先导式减压阀。先导式减压阀的工作原理与直动式的基本相同。先导式减压阀所用的调压气体,是由小型的直动式减压阀供给的。若把小型直动式减压阀装在阀体内部,则称为内部先导式减压阀;若将小型直动式减压阀装在主阀体外部,则称为外部先导式减压阀。 工作过程如下: 1、关闭减压阀前的闸阀,开启减压阀后的闸阀,制造下游低压环境; 2、将调节螺钉减压阀按逆时针旋转至最上位置(相对最低出口压力),然后关闭减压阀后闸阀; 3、慢慢开启减压阀前的闸阀至全开; 4、顺时针慢慢旋转调节螺钉,将出口压力调至所需要的压力(以阀后表压为准);调整好后,将锁紧螺母锁紧,打开减压阀后闸阀; 5、如在调整时出口压力高于设定压力,须从第一步开始重新调整,即只能从低压向高压调。

求装载机减压阀工作原理图和说明谢谢各位大虾

3,堆土场一般采用什么结构

5.4基坑开挖方法 5.4.1车站基坑开挖步骤 车站基坑由西向东纵向分段竖向分层开挖,每段基坑的开挖长度与主体分节相对应,为了有利于基底排水,开挖面比主体施工段超前6.0m,开挖面坡度定为1:1,并设置1个长为6.0m的平台,以保证开挖面的稳定。 基坑从上至下分两层开挖,挖一层吊装一排钢支撑。 连续墙底标高 约14m 6m 6m 原地面 结构底板 开挖步骤示意图 步骤一、坑内降水,开挖基坑至第一道支撑底1m。 步骤二、架设第一道钢支撑,第二次 开挖基坑至第二道钢支撑 底1m。 步骤三、架设第二道钢支撑。 步骤四、开挖基坑至设计基底标高。基坑开挖前,设置管井井点降水,以利开挖人员和机械作业及土体装卸运输。顶层6.0m以内用长臂挖掘机开挖,开挖过程中坑内用小型装载机配合,将远离挖机的土方推至挖机的工作范围内。6.0m以下的土方用人力配合挖掘机挖装,吊机提装自卸车。白天开挖土方存于临时堆土场,夜间开挖土方直接运至弃土场。小挖掘机的就位(进出工作面、调头等)用吊车吊运。因坑内的钢管支撑间的水平净距只有2.4m,上下净距约3.8~5.4m,为确保挖掘机作业时不挤压、不碰撞钢支撑,作业时注意以下几点: 第一:钢支撑顶面以下1.0m范围内挖掘机直接挖装。机械作业时派人前后左右引导司机作业。这一高度挖掘机的左右履带不平引起的左右摆动较小,不致于碰撞钢支撑。 第二:以下部分先用人力在基坑一侧挖一个底部长宽尺寸为4.5m×3.0m的工作坑,坑底离钢支撑底面3.0m~3.5m,将挖掘机吊运至工作坑内往另一头开挖,此时机器在钢支撑之下,不致引起碰撞。如下图示: 5.4.2钢管支撑施工 1)钢管支撑布置 横向支撑钢管沿深度方向设置2道,纵向间距约3m。 2)钢管支撑构造 图5-19 钢支撑端头构造图 模筑砼边界 Ф609钢管 底 座 顶力锁紧段 钢围檩 止水环钢支撑采用壁厚16mm,直径为609mm的钢管,根据支顶距离选合适的节段用螺 钢 管 支 撑 钻孔桩 吊土斗 栓连接法兰盘拼接成要求的长度。如下页图示: 图5-20钢支撑预加顶力示意图 模筑砼面边界 千斤顶 底座 锁紧片 伸缩头 钢围檩 φ609钢管支撑 φ609钢管支撑 钢支撑平面布置图二 钢围檩 钢围檩 100t千斤顶 100t千斤顶 钢支撑平面布置图一 基坑宽度(按实长) 钻孔灌注桩 3)顶力施加 ①预加顶力设备:用两套电动油压千斤顶,专用千斤顶顶力一致,始终能保持两个千斤顶的极限顶力一致,并控制在设计与顶力以内,其原理如下图: P 千斤顶 换向阀 压力表换向阀 油泵 ②加力方法和预应力的锁定:钢管撑的端部设有专门的顶力座,用两台千斤顶在两侧均匀施顶,当顶力达到设计预顶力105%要求后,在锁紧段安装锁紧片后卸下千斤顶。 (3)垂直对顶钢支撑安装 ①安装型钢底座。 ②在地面拼接好支撑用吊车就位。 ③将顶头焊在型钢底座上。 ④施加预应力。 ⑤用锁紧片锁紧钢支撑。 ⑥支撑两头焊接。 ⑦千斤顶卸载。 (4)端头斜撑安装:其方法同上,只是在型钢底座安装好后顶点处焊制防滑挡块,防止支撑受力侧滑。 (5)钢支撑拆除:钢支撑的拆除时间必须在砼强度达到设计要求后,先用两个三角架将钢支撑托起,用千斤顶顶紧支撑让锁紧片松动,然后拆除锁紧片。 (6)钢支撑的施工安全措施 吊车悬吊就位 ①在支撑表面粘贴电阻式应变片,定期测量其轴力,根据测量结果判定安全性。 ②加强支撑的端部焊接质量,避免顶紧力丧失后下坠。 ③加强斜撑的防滑措施如下图示: 钢槽挡块 钢管斜撑 防止斜撑滑动示意图 H 型钢底座 ④跨度超过22m的钢支撑根据设计要求对支撑要进行加固,加固办法在跨中部位下设钢立柱支承,水平用型钢将钢支撑联系,以增加支撑稳定性。 ⑤严禁施工作业时碰撞支撑。

堆土场一般采用什么结构

4,装载机发动机的工作原理

二冲程柴油机的工作原理 通过活塞的两个冲程完成一个工作循环的柴油机称为二冲程柴油机,油机完成一个工作循环曲轴只转一圈,与四冲程柴油机相比,它提高了作功 能力,在具体结构及工作原理方面也存在较大差异。 二冲程柴油机与四冲程柴油机基本结构相同,主要差异在配气机构方面。二冲 程柴油机没有进气阀,有的连排气阀也没有,而是在气缸下部开设扫气口及排气口; 或设扫气口与排气阀机构。并专门设置一个由运动件带动的扫气泵及贮存压力空气 的扫气箱,利用活塞与气口的配合完成配气,从而简化了柴油机结构。 图是二冲程柴油机工作原理图。扫气泵附设在柴油机的一侧,它的 转子由柴油机带动。空气从泵的吸入吸入,经压缩后排出,储存在具有较大容积的 扫气箱中,并在其中保持一定的压力。现以图说明二冲程柴油机的工作 原理。 燃烧膨胀及排气冲程: 燃油在燃烧室内着火燃烧,生成高温高压燃气。活塞在燃气的推动下,由上止点 向下运动,对外作功。活塞下行直至排气口打开(此时曲柄在点位置,此时燃气 膨胀作功结束,气缸内大量废气靠自身高压自由排气,从排气口排人到排气管。 当气缸内压力降至接近扫气压力时(一般扫气箱中的扫气压力为0 12,下行活塞把扫气口3打开(此时曲柄在点4的位置,扫气空气进入气缸, 同时把气缸内的废气经排气口赶出气缸。活塞运行到下止点,本冲程结束,但扫气 过程一直持续到下一个冲程排气口关闭(此时曲柄在点位置为止。 ·4· 342 第三篇船舶柴油机检修图二冲程柴油机工作原理示意图 扫气及压缩冲程: 活塞由下止点向上移动,活塞在遮住扫气口之前,由扫气泵供给储存在扫气箱 内的空气,通过扫气口进入气缸,气缸中的残存废气被进入气缸的空气通过排气口 扫出气缸。活塞继续上行,逐渐遮住扫气口,当扫气口完全关闭后(此时曲柄在点 位置,空气停止充人,排气还在进行,这阶段称为“过后排气阶段”。排气口关闭时 (此时曲柄在点位置,气缸中的空气就开始被压缩。当压缩至上止点前点时, 喷油器将燃油喷人气缸,与高温高压的空气相混合,随即在上止点附近发火,自行着 火燃烧。本冲程结束,并与前一冲程形成一个完整的工作循环。 二冲程柴油机示功图见图,其中,为喷油始点,为活塞上止点,为 燃烧终点。 二冲程柴油机与四冲程柴油机相比具有一些明显优点,当然也存在本身固有的 缺点。 2、四冲程柴油机的工作原理 柴油机的工作是由进气、压缩、燃烧膨胀和排气这四个过程来完成的,这四个过程构成了一个工作循环。活塞走四个过程才能完成一个工作循环的柴油机称为四冲程柴油机。现对照上面的动画了说明它的工作理原。 一. 进气冲程 第一冲程——进气,它的任务是使气缸内充满新鲜空气。当进气冲程开始时,活塞位于上止点,气缸内的燃烧室中还留有一些废气。 当曲轴旋转肘,连杆使活塞由上止点向下止点移动,同时,利用与曲轴相联的传动机构使进气阀打开。 随着活塞的向下运动,气缸内活塞上面的容积逐渐增大:造成气缸内的空气压力低于进气管内的压力,因此外面空气就不断地充入气缸。 进气过程中气缸内气体压力随着气缸的容积变化的情况如动画所示。图中纵坐标表示气体压力P,横坐标表示气缸容积Vh(或活塞的冲S),这个图形称为示功图。图中的压力曲线表示柴油机工作时,气缸内气体压力的变化规律。从土中我们可以看出进气开始,由于存在残余废气,所以稍高于大气压力P0。在进气过程中由于空气通过进气管和进气阀时产生流动阻力,所以进气冲程的气体压力低于大气压力,其值为0.085~0.095MPa,在整个进气过程中,气缸内气体压力大致保持不变。 当活塞向下运动接近下止点时,冲进气缸的气流仍具有很高的速度,惯性很大,为了利用气流的惯性来提高充气量,进气阀在活塞过了下止点以后才关闭。虽然此时活塞上行,但由于气流的惯性,气体仍能充人气缸。 二. 压缩冲程 第二冲程——压缩。压缩时活塞从下止点间上止点运动,这个冲程的功用有二,一是提高空气的温度,为燃料自行发火作准备:二是为气体膨胀作功创造条件。当活塞上行,进气阀关闭以后,气缸内的空气受到压缩,随着容积的不断细小,空气的压力和温度也就不断升高,压缩终点的压力和湿度与空气的压缩程度有关,即与压缩比有关,一般压缩终点的压力和温度为:Pc=4~8MPa,Tc=750~950K。 柴油的自燃温度约为543—563K,压缩终点的温度要比柴油自燃的温度高很多,足以保证喷入气缸的燃油自行发火燃烧。 喷入气缸的柴油,并不是立即发火的,而且经过物理化学变化之后才发火,这段时间大约有0.001~0.005秒,称为发火延迟期。因此,要在曲柄转至上止点前10~35°曲柄转角时开始将雾化的燃料喷入气缸,并使曲柄在上止点后5~10°时,在燃烧室内达到最高燃烧压力,迫使活塞向下运动。 三. 燃烧膨胀冲程 第三冲程——燃烧膨胀。在这个冲程开始时,大部分喷入燃烧室内的燃料都燃烧了。燃烧时放出大量的热量,因此气体的压力和温度便急剧升高,活塞在高温高压气体作用下向下运动,并通过连秆使曲轴转动,对外作功。所以这一冲程又叫作功或工作冲程。 随着活塞的下行,气缸的容积增大,气体的压力下降,工作冲程在活塞行至下止点,排气阀打开时结束。 在动画中,工作冲程的压力变化这条线上升部分表示燃料在气缸内燃烧时压力的急剧升高,最高点表示最高燃烧压力Pz,此点的压力和温度为: Pz=6~15MPa, Tz=1800~2200K 最高燃烧压力与压缩终点压力之比(Pz/Pc),称为燃烧时的压力升高比, 用λ表示。根据柴油机类型的不同,在最大功牢时λ值的范围如下:λ=Pz/Pc=1.2~2.5。 四. 排气冲程 第四冲程——排气。排气冲程的功用是把膨胀后的废气排出去,以便充填新鲜空气,为下一个循环的进气作准备。当工作冲程活塞运动到下止点附近时,排气阀开起,活塞在曲轴和连杆的带动下,由下止点向上止点运动,并把废气排出气缸外。由于排气系统存在着阻力,所以在排气冲程开始时,气缸内的气体压力加比大气压力高0.025—0.035MPa,其温度Tb=1000~1200K。为了减少排气时活塞运动的阻力,排气阀在下止点前就打开了。排气阀一打开,具有一定压力的气体就立即冲出缸外,缸内压力迅速下降,这样当活塞向上运动时,气缸内的废气依靠活塞上行排出去。为了利用排气时的气流惯性使废气排出得干净,排气阀在上止点以后才关闭。 在动画中,排气冲程曲线表示在排气过程中,缸内的气体压力几乎是不变的,但比大气压力稍高一些。排气冲程终点的压力Pr约为0.105~0.115MPa,残余废气的温度Pr约为850~960K。 由于进、排气阀都是早开晚关的;所以在排气冲程之末和进气冲程之初,活塞处于上止点附近时,有一段时间进、排气阀同时开起,这段时间用曲轴转角来表示,称为气阀重迭角。 排气冲程结束之后,又开始了进气冲程,于是整个工作循环就依照上述过程重复进行。由于这种柴油机的工作循环由四个活塞冲程即曲轴旋转两转完成的,故称四冲程柴油机。 在四冲程柴油机的四个冲程中,只有第三冲程即工作冲强才产生动力对外作功,而其余三个冲程都是消耗功的准备过程。为此在单缸柴油机上必须安装飞轮,利用飞轮的转动惯性,使曲轴在四个冲程中连续而均匀地运转。
建议你买本装载机工作原理书,我就买了一本 上面不光有发动机的工作原理,装载机各个部件的远离都有。听别人说的不定对
发动机都是柴油机,和普通柴油车得发动机没区别

5,请问装载机变速箱结构和原理

这是我从网上下的,也不知道有没有用,如果不对请原谅! 装载机液力变矩器导向轮的结构优化改进内容提要:分析了装载机变矩器油温过高和导向轮磨损的原因,提出对变距两导向轮实行结构改进的方案,改进后使用效果评价。 1 故障现象 我公司近年购进的一台50C装载机,在施工过程中出现液力变矩器油温过高,变矩器油压降至0.8~1.0Mpa,且伴有泄漏,工作无力。在检查散热系统正常后,对变矩器拆检,发现第一导轮与止推挡圈接触面及第二导轮与自由轮座圈接触面有磨损,泄漏从涡轮轴骨架式橡胶油封处出来。在更换两导向轮、变矩器各部位密封圈及清洗更换变速箱传动油后,试机检查,装载机工作不到半个班时,又出现变矩器油温偏高,油压下降,工作无力。从变速箱检查孔检查传动油,发现变速箱油底壳中又有白色悬浮颗粒,证明仍有磨损的铝质合金粉末进入传动油。重新吊拆变矩器检查,发现仍是两导向轮有磨损,检查其它各部位均正常。将变矩器总成送该机生产厂家检修,返修后试机,上述问题仍然存在。后又经厂家技术人员到现场检修,仍无法解决此问题。在此情况下,决定自行对该变距器两导轮结构进行技术改进。 2 变矩器故障原因分析 2.1 变矩器油温升高的常见故障 装载机在作业过程中,液力变矩器根据负荷的变化将发动机的机械能进行扭矩转换后传给变速箱。由于转换过程中的能量损失,引起变矩器循环油温度升高,当温度升高太快且超过一定的极限后,就会产生气泡和氧化沉淀,使传动油粘度下降,起不到润滑作用。同时造成橡胶油封破坏,产生泄漏等,致使变矩器工作特性变坏。而造成油温升高过快最根本的原因是变矩器传动油循环流量不足或散热系统有故障。前面几次维修只是根据以上分析进行,对导轮磨损只考虑了装配关系,致使一直无法解决该机故障。 2.2 双导轮磨损原因分析 该机的故障主要是由导轮磨损引起的,应从导轮磨损上找原因。该变矩器为双导轮综合变矩器,两导轮是与自由轮外圈装在一起,自由轮机构是棘轮结构,导轮旋转方向与发动机旋转方向相同。导轮磨损原因一是当第一导轮给予从涡轮传过来压力油力矩时,同时也受到压力油给予导轮的反作用力矩,致使第一导轮在高速旋转时受到轴向挤压力,轴向挤压力使第一导轮旋转时与止推挡圈接触面之间产生摩擦。同样,第二导轮也受到第一导轮传过来的压力油的反作用力矩,致使第二导轮在轴向挤压力作用下与自由轮座圈之间产生摩擦。原因二是两导轮与自由轮座圈、止推挡圈接触面之间接触面积偏小,挤压形成的压强大,高速旋转时两接触面之间润滑困难,产生摩擦。摩擦产生的热量致使局部温度过高,润滑性能下降,导致两轮磨损加快。原因三是导轮与自由轮座圈、止推挡圈材质不同,当然,最先受损的是硬度较小的铝质合金导轮。出现磨损后,产生磨粒,因变矩器为一个高速旋转体,固体颗粒将使各工作轮的摩擦力和磨损增加,进一步加剧了各元件的磨损。同时,随着导轮的磨损,两导轮产生轴向位移,改变了两导轮的工作特性。另外,油温过高,致使变矩器橡胶密封圈失效,产生泄漏,大大降低了变矩器的工作效率。 3 变矩器导轮结构的改进 3.1 根据以上分析可知两道轮磨捐赠是因摩擦引起的,改善磨损部位的摩擦特性,减少摩擦是解决该机故障的关键。确定导向轮改进方案为:(1)增大两导轮与自由轮座圈和止推挡圈接角界面的面积,(2)忙乱变两导轮磨捐赠部位的材质,增大两导轮磨捐赠部位的硬度。3.2方案的实施 (1)在车床上将两导轮与自由轮座圈支承面、止推挡圈支承面扩大至D3、加深至H2(见两导轮装配示意图)。改进前两导向轮装配示意图 改进后两导向轮装配示意图 (2)、用乙炔氧割加温熔化铜焊条至已加深扩大支承面后的两导轮上,并进行保温处理。 (2)、用乙炔氧割加温熔化铜焊条至已加深扩大支承面后的两导轮上,并进行保温处理。 (3)、将上述处理后的两导轮与自由轮座圈、止推挡圈支承面直径精加工至D2,深度仍加工至H1不变。
这是我从网上下的,也不知道有没有用,如果不对请原谅, 装载机液力变矩器导向轮的结构优化改进内容提要:分析了装载机变矩器油温过高和导向轮磨损的原因,提出对变距两导向轮实行结构改进的方案,改进后使用效果评价。 1 故障现象 我公司近年购进的一台50C装载机,在施工过程中出现液力变矩器油温过高,变矩器油压降至0.8~1.0Mpa,且伴有泄漏,工作无力。在检查散热系统正常后,对变矩器拆检,发现第一导轮与止推挡圈接触面及第二导轮与自由轮座圈接触面有磨损,泄漏从涡轮轴骨架式橡胶油封处出来。在更换两导向轮、变矩器各部位密封圈及清洗更换变速箱传动油后,试机检查,装载机工作不到半个班时,又出现变矩器油温偏高,油压下降,工作无力。从变速箱检查孔检查传动油,发现变速箱油底壳中又有白色悬浮颗粒,证明仍有磨损的铝质合金粉末进入传动油。重新吊拆变矩器检查,发现仍是两导向轮有磨损,检查其它各部位均正常。将变矩器总成送该机生产厂家检修,返修后试机,上述问题仍然存在。后又经厂家技术人员到现场检修,仍无法解决此问题。在此情况下,决定自行对该变距器两导轮结构进行技术改进。 2 变矩器故障原因分析 2.1 变矩器油温升高的常见故障 装载机在作业过程中,液力变矩器根据负荷的变化将发动机的机械能进行扭矩转换后传给变速箱。由于转换过程中的能量损失,引起变矩器循环油温度升高,当温度升高太快且超过一定的极限后,就会产生气泡和氧化沉淀,使传动油粘度下降,起不到润滑作用。同时造成橡胶油封破坏,产生泄漏等,致使变矩器工作特性变坏。而造成油温升高过快最根本的原因是变矩器传动油循环流量不足或散热系统有故障。前面几次维修只是根据以上分析进行,对导轮磨损只考虑了装配关系,致使一直无法解决该机故障。 2.2 双导轮磨损原因分析 该机的故障主要是由导轮磨损引起的,应从导轮磨损上找原因。该变矩器为双导轮综合变矩器,两导轮是与自由轮外圈装在一起,自由轮机构是棘轮结构,导轮旋转方向与发动机旋转方向相同。导轮磨损原因一是当第一导轮给予从涡轮传过来压力油力矩时,同时也受到压力油给予导轮的反作用力矩,致使第一导轮在高速旋转时受到轴向挤压力,轴向挤压力使第一导轮旋转时与止推挡圈接触面之间产生摩擦。同样,第二导轮也受到第一导轮传过来的压力油的反作用力矩,致使第二导轮在轴向挤压力作用下与自由轮座圈之间产生摩擦。原因二是两导轮与自由轮座圈、止推挡圈接触面之间接触面积偏小,挤压形成的压强大,高速旋转时两接触面之间润滑困难,产生摩擦。摩擦产生的热量致使局部温度过高,润滑性能下降,导致两轮磨损加快。原因三是导轮与自由轮座圈、止推挡圈材质不同,当然,最先受损的是硬度较小的铝质合金导轮。出现磨损后,产生磨粒,因变矩器为一个高速旋转体,固体颗粒将使各工作轮的摩擦力和磨损增加,进一步加剧了各元件的磨损。同时,随着导轮的磨损,两导轮产生轴向位移,改变了两导轮的工作特性。另外,油温过高,致使变矩器橡胶密封圈失效,产生泄漏,大大降低了变矩器的工作效率。 3 变矩器导轮结构的改进 3.1 根据以上分析可知两道轮磨捐赠是因摩擦引起的,改善磨损部位的摩擦特性,减少摩擦是解决该机故障的关键。确定导向轮改进方案为:(1)增大两导轮与自由轮座圈和止推挡圈接角界面的面积,(2)忙乱变两导轮磨捐赠部位的材质,增大两导轮磨捐赠部位的硬度。3.2方案的实施 (1)在车床上将两导轮与自由轮座圈支承面、止推挡圈支承面扩大至D3、加深至H2(见两导轮装配示意图)。改进前两导向轮装配示意图 改进后两导向轮装配示意图 (2)、用乙炔氧割加温熔化铜焊条至已加深扩大支承面后的两导轮上,并进行保温处理。 (2)、用乙炔氧割加温熔化铜焊条至已加深扩大支承面后的两导轮上,并进行保温处理。 (3)、将上述处理后的两导轮与自由轮座圈、止推挡圈支承面直径精加工至D2,深度仍加工至H1不变。

文章TAG:装载机  机构  简图  怎么  装载机机构简图怎么看  
下一篇