本文目录一览

1,三相无刷直流电机的供电方式

直流电机的励磁方式是指对励磁绕组如何供电、产生励磁磁通势而建立主磁场的个功率开关器件组成三相逆变器,就可驱动三相永磁无刷直流电机,控制器电路构成
没有听说过三相直流电机。只有三相交流电机。 "内设 整流模块的 直流电机"进线也是单相啊!不会内设“整流模块”是“逆变模块”把!

三相无刷直流电机的供电方式

2,如何控制无刷电机

这是三相逆变器的电路拓路图,用于三相交流电机。你的无刷电机应该是直流电机。方法类似,电路中有三个桥臂,6个IGBT,你只需要一个就够了。功率小的话,可用三极管替代IGBT。基极通过一个电阻连接单片机的PWM输出端口。单片机输出PWM波形,PWM的方波占空比与等效直流电压成正比。
晕很麻烦的你才这么点东西要很多的单片机/HALL ic。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

如何控制无刷电机

3,急求无刷电机控制3相6状态的电路图

大家好,我知道是什么原因了。我会了,指导该怎么办了?谢谢各位的帮助。嘿嘿嘿.........................谢谢各位了!
忘了告诉大家了,这是是y型接法的,希望各位能够帮我一下,谢谢了!
怎么没有人顶呀?我自己顶吧!希望高手们都能够看到我的求助,帮我解决一下我的疑惑!谢谢各位了!
7楼楼主,具体怎么设置呀?我设置的就是有问题,做出来的答案都不正确。您能不能给看一下,我画的三相六状态无刷电机的控制电路图对吗?到底该怎么来控制这个三相六状态的无刷电机的控制电路图呀。能不能够给我分享一个你的成果呀。非常感谢!
怎么没有指点的呢?希望给为帮帮忙呀。帮我解决一下这个问题吧!谢谢各位了!

急求无刷电机控制3相6状态的电路图

4,无刷直流电机怎么控制转动

1、可以用电调啊,电调和逆变器有区别,简化来说,逆变器工作情况固定以后就变成电调了,所以,电调可以用,但是转速和方向也都是固定的,类似于开环控制方法,不能带太重的负载。如果非要反转,把V相和W相动力线换一下,也可以实现。2、逆变器需要附加的控制电路来控制,将直流电源逆变成一定频率一定幅值的正弦波,当然,对于无刷直流电机来说,需要逆变器输出的是方波,因为它的反电动势是方的,这种控制模式就是二楼说的伺服驱动了。这种控制方式很灵活,属于闭环控制,正反转都可以,也不会因重载失步,更可以集成很多保护功能。3、无刷直流电机的脉宽控制非常成熟,也很简单,早就有集成芯片可以做到了,也就是无刷直流电机驱动芯片,你可以再百度百度。4、所谓的电子换向器,个人理解哈,应该是指的电机换相的方法,而不是具体的物理实物,如果你这个无刷直流电机是三相的,那么它的换相实际上是通过逆变器完成的,逆变器的驱动控制实际上就是一种换相驱动,比如无刷直流电机驱动最常用的六步换相法,无刷直流电机的直流两个字表示的是其控制方法为PWM脉宽调制法,类似于直流电机的驱动方法,但实际上属于交流电机,它的无刷化就是通过三相逆变器的使用实现的。 最后,建议你如果要了解更多,看看电机拖动和运动控制的相关内容就OK,如果要驱动你手上的电机,记下它的铭牌参数可直接购买配套驱动器
无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 由于无刷直流电动机是以自控式运行的,所以不会象变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。 中小容量的无刷直流电动机的永磁体,现在多采用高磁能积的稀土钕铁硼(nd-fe-b)材料。因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。 近三十年来针对异步电动机变频调速的研究,归根到底是在寻找控制异步电动机转矩的方法,稀土永磁无刷直流电动机必将以其宽调速、小体积、高效率和稳态转速误差小等特点在调速领域显现优势。 无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为bldc.无刷直流电机的运转效率,低速转矩,转速精度等都比任何控制技术的变频器还要好,所以值得业界关注.本产品已经生产超过55kw,可设计到400kw,可以解决产业界节电与高性能驱动的需求。 1、全面替代直流电机调速、全面替代变频器+变频电机调速、全面替代异步电机+减速机调速; 2、可以低速大功率运行,可以省去减速机直接驱动大的负载; 3、具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; 4、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小; 5、无级调速,调速范围广,过载能力强; 6、体积小、重量轻、出力大; 7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置; 8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年可收回购置成本; 9、可靠性高,稳定性好,适应性强,维修与保养简单; 10、耐颠簸震动,噪音低,震动小,运转平滑,寿命长; 11、没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;12、根据需要可选梯形波磁场电机和正旋波磁场电机。 (以上相对有刷电机而言)

5,无刷电机的制作原理

无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。它具有可靠性高、无换向火花、机械噪声低等优点,广泛应用于高档录音座、录像机、电子仪器及自动化办公设备中。无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。位置传感按转子位置的变化,沿着一定次序对定子绕组的电流进行换流(即检测转子磁极相对定子绕组的位置,并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,按一定的逻辑关系进行绕组电流切换)。定子绕组的工作电压由位置传感器输出控制的电子开关电路提供。位置传感器有磁敏式、光电式和电磁式三种类型。采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。 采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装有电磁传感器部件(例如耦合变压器、接近开关、LC谐振电路等),当永磁体转子位置发生变化时,电磁效应将使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。
直流无刷电机的工作原理 直流无刷电机的优越性 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。 此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(analog-to-digital converter,adc)、脉冲宽度调制(pulse wide modulator,pwm)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。 直流无刷电机的控制结构 直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(p)影响: n=120.f / p。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 直流无刷驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24v)或以交流电输入(110v/220 v),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(q1~q6)分为上臂(q1、q3、q5)/下臂(q2、q4、q6)连接电机作为控制流经电机线圈的开关。控制部则提供pwm(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。 此主题相关图片如下: 直流无刷电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之ah、bh、ch(这些称为上臂功率晶体管)及al、bl、cl(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: ah、bl一组→ah、cl一组→bh、cl一组→bh、al一组→ch、al一组→ch、bl一组, 但绝不能开成ah、al或bh、bl或ch、cl。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。 此主题相关图片如下: 当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(command)与hall-sensor信号变化的速度加以比对(或由软件运算)再来决定由下一组(ah、bl或ah、cl或bh、cl或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由pwm来完成。pwm是决定电机转速快或慢的方式,如何产生这样的pwm才是要达到较精准速度控制的核心。高转速的速度控制必须考虑到系统的clock 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性。至于低转速的速度控制尤其是低速起动则因为回传的hall-sensor信号变化变得更慢,怎样撷取信号方式、处理时机以及根据电机特性适当配置控制参数值就显得非常重要。或者速度回传改变以encoder变化为参考,使信号分辨率增加以期得到更佳的控制。电机能够运转顺畅而且响应良好,p.i.d.控制的恰当与否也无法忽视。之前提到直流无刷电机是闭回路控制,因此回授信号就等于是告诉控制部现在电机转速距离目标速度还差多少,这就是误差(error)。知道了误差自然就要补偿,方式有传统的工程控制如p.i.d.控制。但控制的状态及环境其实是复杂多变的,若要控制的坚固耐用则要考虑的因素恐怕不是传统的工程控制能完全掌握,所以模糊控制、专家系统及神经网络也将被纳入成为智能型p.i.d.控制的重要理论。
结构上,无刷电机和有刷电机有相似之处,也有转子和定子,只不过和有刷电机的结构相反;有刷电机的转子是线圈绕组,和动力输出轴相连,定子是永磁磁钢;无刷电机的转子是永磁磁钢,连同外壳一起和输出轴相连,定子是绕组线圈,去掉了有刷电机用来交替变换电磁场的换向电刷,故称之为无刷电机(Brushless motor),那现在就有问题了,没有了电磁场的变换,如何让无刷电机转动呢?简单而言,依靠改变输入到无刷电机定子线圈上的电流波交变频率和波形,在绕组线圈周围形成一个绕电机几何轴心旋转的磁场,这个磁场驱动转子上的永磁磁钢转动,电机就转起来了,电机的性能和磁钢数量、磁钢磁通强度、电机输入电压大小等因素有关,更与无刷电机的控制性能有很大关系,因为输入的是直流电,电流需要电子调速器将其变成3相交流电,还需要从遥控器接收机那里接收控制信号,控制电机的转速,以满足模型使用需要。 总的来说,无刷电机的结构是比较简单的,真正决定其使用性能的还是无刷电子调速器,好的电子调速器需要有单片机控制程序设计、电路设计、复杂加工工艺等过程的总体控制.

文章TAG:三相  无刷电机  电机驱动  驱动  三相无刷电机驱动电路图  
下一篇